| 1 |
Breskuvienė, Dalia; Dzemyda, Gintautas. Imbalanced data classification approach based on clustered training set // Data science in applications /editors: Dzemyda, G., Bernatavičienė, J., Kacprzyk, J. Cham : Springer, 2023. ISBN 9783031244520. eISBN 9783031244537. p. 43-62. (Studies in Computational Intelligence, ISSN 1860-949X, eISSN 1860-9503 ; vol. 1084). DOI: 10.1007/978-3-031-24453-7_3. |
| 2 |
Breskuvienė, Dalia; Dzemyda, Gintautas. Categorical feature encoding techniques for improved classifier performance when dealing with imbalanced data of fraudulent transactions // International journal of computers communications & control. Oradea : Agora University. ISSN 1841-9836. eISSN 1841-9844. 2023, vol. 18, iss. 3, art. no. 5433, p. [1-17]. DOI: 10.15837/ijccc.2023.3.5433. [DB: Science Citation Index Expanded (Web of Science), Scopus] [IF: 2.000; AIF: 4.350; Q3 (2023 InCities JCR SCIE)] |
| 3 |
Breskuvienė, Dalia; Dzemyda, Gintautas. What is a concept drift, and does it affect machine learning performance? // DAMSS: 14th conference on data analysis methods for software systems, Druskininkai, Lithuania, November 30 - December 2, 2023. Vilnius : Vilniaus universiteto leidykla, 2023. eISBN 9786090709856. p. 14. (Vilnius University Proceedings, eISSN 2669-0233 ; vol. 39). DOI: 10.15388/DAMSS.14.2023. [DB: Dimensions] |